高分辨率表示对于基于视觉的机器人抓问题很重要。现有作品通常通过子网络将输入图像编码为低分辨率表示形式,然后恢复高分辨率表示。这将丢失空间信息,当考虑多种类型的对象或远离摄像机时,解码器引入的错误将更加严重。为了解决这些问题,我们重新审视了CNN的设计范式,以实现机器人感知任务。我们证明,与串行堆叠的卷积层相反,使用平行分支将是机器人视觉抓握任务的更强大设计。特别是,为机器人感知任务(例如,高分辨率代表和轻量级设计)提供了神经网络设计的准则,这些指南应对不同操纵场景中的挑战做出回应。然后,我们开发了一种新颖的抓地视觉体系结构,称为HRG-NET,这是一种平行分支结构,始终保持高分辨率表示形式,并反复在分辨率上交换信息。广泛的实验验证了这两种设计可以有效地提高基于视觉的握把和加速网络训练的准确性。我们在YouTube上的真实物理环境中显示了一系列比较实验:https://youtu.be/jhlsp-xzhfy。
translated by 谷歌翻译
这项工作提出了下一代人类机器人界面,只能通过视觉来推断和实现用户的操纵意图。具体而言,我们开发了一个集成了近眼跟踪和机器人操作的系统,以实现用户指定的操作(例如,抓取,拾取和位置等),在其中将视觉信息与人类的注意合并在一起,以创建为所需的映射机器人动作。为了实现视力指导的操纵,开发了一个头部安装的近眼跟踪设备,以实时跟踪眼球运动,以便可以确定用户的视觉注意力。为了提高抓地力性能,然后开发出基于变压器的GRASP模型。堆叠的变压器块用于提取层次特征,其中在每个阶段扩展了通道的体积,同时挤压了特征地图的分辨率。实验验证表明,眼球跟踪系统产生低的凝视估计误差,抓地力系统在多个握把数据集上产生有希望的结果。这项工作是基于凝视互动的辅助机器人的概念证明,该机器人具有巨大的希望,可以帮助老年人或上肢残疾在日常生活中。可在\ url {https://www.youtube.com/watch?v=yuz1hukyurm}上获得演示视频。
translated by 谷歌翻译
关节2D心脏分割和3D体积重建是建立统计心脏解剖模型的基础,并了解运动模式的功能机制。但是,由于CINE MR和高主体间方差的平面分辨率低,精确分割心脏图像并重建3D体积是具有挑战性的。在这项研究中,我们提出了一个基于潜在空间的端到端框架DeepRecon,该框架会产生多个临床上基本的结果,包括准确的图像分割,合成高分辨率3D图像和3D重建体积。我们的方法确定了Cine图像的最佳潜在表示,其中包含心脏结构的准确语义信息。特别是,我们的模型共同生成具有准确的语义信息的合成图像,并使用最佳潜在表示对心脏结构进行分割。我们进一步探索了3D形状重建和4D运动模式通过不同的潜在空间操纵策略进行适应的下游应用。同时生成的高分辨率图像具有评估心脏形状和运动的高可解释价值。实验性结果证明了我们的有效性在多个方面的方法,包括2D分割,3D重建,下游4D运动模式适应性。
translated by 谷歌翻译
组合来自多视图图像的信息对于提高自动化方法的疾病诊断方法的性能和鲁棒性至关重要。但是,由于多视图图像的非对齐特性,跨视图的构建相关性和数据融合在很大程度上仍然是一个开放的问题。在这项研究中,我们提出了输血,这是一种基于变压器的体系结构,可使用卷积层和强大的注意机制合并不同的多视图成像信息。特别是,针对丰富的跨视图上下文建模和语义依赖性挖掘,提出了发散的融合注意(DIFA)模块,以解决从不同图像视图中捕获未对齐数据之间的长期相关性的关键问题。我们进一步提出了多尺度注意(MSA),以收集多尺度特征表示的全局对应关系。我们评估了心脏MRI(M \&MS-2)挑战队列中多疾病,多视图\&多中心右心室分段的输血。输血表明了针对最先进方法的领先绩效,并为多视图成像集成的新观点打开了稳健的医学图像分割。
translated by 谷歌翻译
自上而下的实例分割框架与自下而上的框架相比,它在对象检测方面表现出了优越性。虽然它有效地解决了过度细分,但自上而下的实例分割却遭受了过度处理问题。然而,完整的分割掩模对于生物图像分析至关重要,因为它具有重要的形态特性,例如形状和体积。在本文中,我们提出了一个区域建议纠正(RPR)模块,以解决这个具有挑战性的分割问题。特别是,我们提供了一个渐进式皇家模块,以逐渐将邻居信息引入一系列ROI。 ROI功能被馈入专门的进料网络(FFN)以进行提案框回归。有了其他邻居信息,提出的RPR模块显示了区域建议位置的校正显着改善,因此与最先进的基线方法相比,在三个生物图像数据集上表现出有利的实例分割性能。实验结果表明,所提出的RPR模块在基于锚固的和无锚的自上而下实例分割方法中有效,这表明该方法可以应用于生物学图像的一般自上而下实例分割。代码可用。
translated by 谷歌翻译
在本文中,我们提出了一个基于变压器的架构,即TF-Grasp,用于机器人Grasp检测。开发的TF-Grasp框架具有两个精心设计的设计,使其非常适合视觉抓握任务。第一个关键设计是,我们采用本地窗口的注意来捕获本地上下文信息和可抓取对象的详细特征。然后,我们将跨窗户注意力应用于建模遥远像素之间的长期依赖性。对象知识,环境配置和不同视觉实体之间的关系汇总以进行后续的掌握检测。第二个关键设计是,我们构建了具有跳过连接的层次编码器架构,从编码器到解码器提供了浅特征,以启用多尺度功能融合。由于具有强大的注意力机制,TF-Grasp可以同时获得局部信息(即对象的轮廓),并建模长期连接,例如混乱中不同的视觉概念之间的关系。广泛的计算实验表明,TF-GRASP在康奈尔(Cornell)和雅克(Jacquard)握把数据集上分别获得了较高的结果与最先进的卷积模型,并获得了97.99%和94.6%的较高精度。使用7DOF Franka Emika Panda机器人进行的现实世界实验也证明了其在各种情况下抓住看不见的物体的能力。代码和预培训模型将在https://github.com/wangshaosun/grasp-transformer上找到
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译
As one of the prevalent methods to achieve automation systems, Imitation Learning (IL) presents a promising performance in a wide range of domains. However, despite the considerable improvement in policy performance, the corresponding research on the explainability of IL models is still limited. Inspired by the recent approaches in explainable artificial intelligence methods, we proposed a model-agnostic explaining framework for IL models called R2RISE. R2RISE aims to explain the overall policy performance with respect to the frames in demonstrations. It iteratively retrains the black-box IL model from the randomized masked demonstrations and uses the conventional evaluation outcome environment returns as the coefficient to build an importance map. We also conducted experiments to investigate three major questions concerning frames' importance equality, the effectiveness of the importance map, and connections between importance maps from different IL models. The result shows that R2RISE successfully distinguishes important frames from the demonstrations.
translated by 谷歌翻译
Text clustering and topic extraction are two important tasks in text mining. Usually, these two tasks are performed separately. For topic extraction to facilitate clustering, we can first project texts into a topic space and then perform a clustering algorithm to obtain clusters. To promote topic extraction by clustering, we can first obtain clusters with a clustering algorithm and then extract cluster-specific topics. However, this naive strategy ignores the fact that text clustering and topic extraction are strongly correlated and follow a chicken-and-egg relationship. Performing them separately fails to make them mutually benefit each other to achieve the best overall performance. In this paper, we propose an unsupervised text clustering and topic extraction framework (ClusTop) which integrates text clustering and topic extraction into a unified framework and can achieve high-quality clustering result and extract topics from each cluster simultaneously. Our framework includes four components: enhanced language model training, dimensionality reduction, clustering and topic extraction, where the enhanced language model can be viewed as a bridge between clustering and topic extraction. On one hand, it provides text embeddings with a strong cluster structure which facilitates effective text clustering; on the other hand, it pays high attention on the topic related words for topic extraction because of its self-attention architecture. Moreover, the training of enhanced language model is unsupervised. Experiments on two datasets demonstrate the effectiveness of our framework and provide benchmarks for different model combinations in this framework.
translated by 谷歌翻译
An increasing number of public datasets have shown a marked clinical impact on assessing anatomical structures. However, each of the datasets is small, partially labeled, and rarely investigates severe tumor subjects. Moreover, current models are limited to segmenting specific organs/tumors, which can not be extended to novel domains and classes. To tackle these limitations, we introduce embedding learned from Contrastive Language-Image Pre-training (CLIP) to segmentation models, dubbed the CLIP-Driven Universal Model. The Universal Model can better segment 25 organs and 6 types of tumors by exploiting the semantic relationship between abdominal structures. The model is developed from an assembly of 14 datasets with 3,410 CT scans and evaluated on 6,162 external CT scans from 3 datasets. We rank first on the public leaderboard of the Medical Segmentation Decathlon (MSD) and achieve the state-of-the-art results on Beyond The Cranial Vault (BTCV). Compared with dataset-specific models, the Universal Model is computationally more efficient (6x faster), generalizes better to CT scans from varying sites, and shows stronger transfer learning performance on novel tasks. The design of CLIP embedding enables the Universal Model to be easily extended to new classes without catastrophically forgetting the previously learned classes.
translated by 谷歌翻译